
LLNL-TR-642019

Lorenz: Using the Web to Make
HPC Easier

J. W. Long

August 7, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Lorenz – Using the Web to Make HPC Easier

Executive Summary

Project Background

In the past five years technologies have emerged that have enabled rich applications to be
delivered via the web. Map-based sites, personalized web portals, and online content editors
have blurred the boundaries between applications and web applications. The Lorenz project
leverages some of the same web technologies and concepts from these sites, and applies
them towards the problem of HPC usage.

The need for Lorenz arose from the difficulties and frustrations associated with high
performance computing from a user’s point of view. Not only do users have to model
complex phenomena on state of the art machines, develop scalable algorithms, write
efficient code, and debug thousands or millions of threads, but they also have to know about
the “mechanics” of HPC – the low level details necessary to use the computer center
effectively.

Users of High Performance Computing (HPC) centers such as Livermore Computing
have historically required expert knowledge of nearly every aspect of the computer center
operation in order to take full advantage of the immense resources available. This
knowledge takes months or more to develop, and can make entering the world of HPC
intimidating for new users.

The goal of the Lorenz project is to improve accessibility and productivity of HPC users
by leveraging modern web technologies. Productivity is improved by increasing access to
information and simplifying tedious or difficult tasks. New HPC users are less intimidated
because the Lorenz web application suite helps coordinate workflow and facilitate the
proper and optimal use of HPC resources.

The Lorenz project has defined three initial phases: a system dashboard aimed at making
information about the computing center easy to determine at-a-glance, job management
including batch job submission and monitoring, and application portals that will provide
a high-level interface for defining simulation input.

A new generation of web technologies has enabled the development of applications with
the richness usually associated with standalone applications. A modern standards-based
web browser is all that’s needed to access the multi-faceted Lorenz application suite.

Lorenz has been under development in the Livermore Computing Division at Lawrence
Livermore National Laboratory since the spring of 2010. The Lorenz project name
honors the famous mathematician and pioneer of modern chaos theory, Edward Lorenz.

Users must know dozens of commands, utilities, and document locations to effectively run
simulations at a computer center. They must answer questions such as: “Which cluster
should I run on given that my job needs more memory than usual?” “Which of the four
parallel filesystems performs best with that cluster?” “What’s the trick for telling the job
scheduler to not hold my job until a scratch filesystem comes back online?” “Why is my job
stuck in pending mode?” “How do I invoke the runtime parallel debugger on my job?”
“What maintenance is planned for this week?” “Who else can see my files, and how much
room do I have remaining in my quota?”

These are just a few examples of the hundreds of details an HPC user needs to know before
being fully productive at a computing center. Users spend weeks or months learning these
details. Computing centers are constantly evolving and expanding, making it that much
harder for users to stay on top of the best practices.

Staff members likewise must deal with a myriad of information, both for maintaining the
systems and for ensuring users have the latest status data and documentation. Having
information at the tip of their fingers about the current status of the center and about
individual users allows tier-1 and tier-2 support personnel to provide the best possible
customer service.

Project Goals
The main goal of the Lorenz project is to help our HPC users focus on their simulations and
science, rather than on the computing center and how to use it. To achieve this, Lorenz
works to reduce the time it takes to learn how to use resources effectively, to simplify
tedious and repetitive tasks, and to make sure that users have access to critical information
when they need it.

The approach we’ve taken is to employ modern web technologies and write or apply
software that encapsulates computing center know-how and policies automatically into the
users’ workflow. The result is an intuitive, responsive, and aesthetically pleasing interface for
the Livermore Computing (LC) high performance machines.

Because the breadth of desktop operating systems in use both inside and outside LLNL
spans all flavors of Linux, Mac, and Windows, the decision was made to use exclusively web-
based technologies in Lorenz. Recent advancements in JavaScript programming, along with
coming innovations in the form of HTML5 and CSS3, made the browser the preferred
development platform. The goal is to provide the user with a robust application interface
that requires nothing more than a modern, standards-based web browser. This approach not
only provides convenient access to Lorenz for internal and external users, but also has
significant advantages over conventional applications in terms of rapid deployment and
updates.

Project Components
The Lorenz project has defined three initial phases: a system "dashboard" aimed at making
information about the computing center easy to determine at-a-glance, job management
including batch job submission and monitoring, and application portals which will provide a
high-level interface for defining simulation input.

Dashboard

The Lorenz dashboard, tabbed “MyLC” at LLNL, is a collection of individual portal
applications (portlets) that provide LC users with access to and information about the most
vital components of the HPC center. Information that previously required knowledge of
dozens of different commands, files, and web pages is now available in one centralized
location. This includes account information, bank and disk usage, quotas, cluster utilization,
news items, active jobs on LC systems, and more (see Table 1.)

Portlets are completely customizable and personalized to each user. Users can tailor their
dashboards to only show information that’s most important to them. The design allows
individuals to develop portlets and easily incorporate them into the dashboard, and work
groups can share portlets amongst themselves.

Portlets currently available to users include:

Portlet Name Purpose
Archival storage quota Get information about your HPSS quota
Bank membership Browse all accounting banks and members
CHAOS update stats Show information about OS updates on clusters
Cluster utilization Show hourly utilization for each cluster
Confluence browser Show a table of confluence spaces to which you have access,

with links for getting to attachments, exporting content, etc.
Current machine loads Show number of nodes available on each cluster
Enclave status Summary of your HPC Enclave status
LC alerts Lists topical alerts, pending downtimes, etc.
LC staff away Show excerpt of the LC staff away calendar
License status Show status of all licensed software
Login node status Show availability, load average, etc. of all login nodes
Machine status Show up/down status, number of users, etc.
My accounts Show all of the hosts and clusters you have access to
My banks Show all accounting banks to which you belong
My disk usage Show your current disk usage on various filesystems
My groups Show groups to which you belong
My historic cpu usage Show your usage information for each cluster
My jobs Show your active and pending batch jobs
My links List of standard LC and personalized links
My processes List processes you have running on login nodes
News Review all active news items
Printer queues Locate printers and view printer queues
Scratch file system usage Show status of various scratch filesystems
Table 1: The MyLC dashboard portlets

Figure 1 below shows an example of the MyLC Dashboard. Individual portlets have
preferences which allow a user to, for example, view information for all clusters or only the
ones to which they have access.

Figure 1. The MyLC Dashboard.

The dashboard consists of a set of individual portlets that can be collapsed, moved around
using drag-and-drop, or completely hidden using the Portlet Control Panel, seen in Figure 2.
Each portlet is a standalone mini-application with its own data sources and display options.
Many portlets allow users to drill down for additional information.

Figure 2. The dashboard’s Portlet Control Panel

The portlet control panel allows the user to control which portlets are displayed. Portlets are
grouped by type: supported (available for everyone), user-developed (available to individual
users or workgroups), and staff (available to computing center staff only.)

Job Management

 The second major phase of Lorenz was built on the idea that HPC centers are managed
around batch processing, and “jobs” (or “runs”) progress through several discrete stages:
setup, submission, queuing/waiting, running, completion, analysis, and archiving. Lorenz
aims to ultimately tie all of these pieces together, including integration with the dashboard
and simulation portals. In addition to helping guide users through the process of defining
batch parameters, monitoring job progress, and interacting with jobs and job output, Lorenz
aims to promote access to additional tools and capabilities which to this point have been
limited to power users. Ultimately Lorenz will guide users in choosing the appropriate
resources, such as cluster and file system, given the requirements of a job.

Figure 3 shows a snapshot of the Job Management application in Lorenz. This interface
allows a user to quickly get a summary of all of his or her pending and running jobs, and to
interact with those jobs in a variety of ways – sending them signals, viewing output files,
generating stack traces, and modifying batch parameters for jobs that have yet to start.

Lorenz also facilitates creating new batch jobs. The interface helps guide the user towards
correctly setting batch parameters by using knowledge of the cluster hardware and batch
partitions, the user’s banks, and so on.

Figure 3. The Lorenz Job Management application.

Simulation Portal
The third major phase of Lorenz is the development of an application portal, which involves
teaming with application code groups to provide a simple graphical interface for their
simulations. This, in turn, seamlessly ties into job submission and monitoring. Users will be
able to directly define simulation parameters and launch applications using a powerful web
front-end. This capability is targeted both at internal LC users as well as potential new users
of the resources at a future Livermore Valley Open Campus computing center.

Because many complex multi-physics codes can have thousands of inputs, providing a
general GUI for building an input deck from scratch is impractical. However, most users of
large applications start with an existing input file, and make some number of small changes
to it. The application portal will feature a process that combines trusted and validated input
files with a GUI that guides the user toward making the relatively minor changes needed for
their particular problem. The input files will be in the form of templates, containing most of
the data needed for a particular problem along with parameterization of changeable inputs.

For example, to model the crushing of an aluminum can, more than 99% of the simulation
input parameters would not need to be changed from one run to the next. One might want
to change the dimensions of the can, or the initial forces on it, but this can be specified with

a very simple form without exposing the thousands of other parameters that are necessary to
provide the simulation with the information it needs in order to run.

Utilities
In addition to the three core components of Lorenz, we also provide a collection of web
tools to simplify every day tasks within LC. These utilities include things like file transfers,
diagnostics, job queue statistics, and more. Additionally, through fine-grained permission
control, we are able to expose a set of administration tools to manage Lorenz.

Lorenz Architecture

As illustrated in Figure 4, Lorenz utilizes a client-server architecture. On the client side the
vehicle typically is a web browser, although it could be any application. The client makes
calls via the Lorenz REST API, or LORA, which provides abstractions for computing center
resources, and simplifies interactions with data, processes, and jobs within the center.

The web server receives and executes these requests, sends commands and queries to the
computing clusters as necessary, takes the raw data from the queries, massages the data as
needed, and returns it to the client application in JSON format. Data retrieved from the
clusters can be persistent (e.g., files or databases) or computed on the fly (e.g., batch queue
commands).

Critical to this process is that the web server is tightly integrated with the rest of the
computing center, allowing us to securely and efficiently operate on behalf of the user on
any cluster. The integrated Kerberos security environment enables Lorenz to provide this
capability.

Figure 4: Lorenz client-server architecture at Livermore Computing

Server Strategies

RESTful API

REST stands for Representational State Transfer, and is the predominant architecture style
for designing web-based client-server applications. It relies on a stateless, cacheable
communications protocol, and is a lightweight alternative to mechanisms like RPC (Remote
Procedure Calls) and heavyweight web services such as SOAP (Simple Object Access
Protocol) and WSDL (Web Services Description Language.)

The Lorenz RESTful API, or LORA, was modeled after the NERSC Web Toolkit (NEWT)
developed at Lawrence Berkeley National Lab. LORA and NEWT are web services that
allow one to access and interact with computing resources through a simple RESTful API.

After discussions with our colleagues at NERSC we decided to adopt their API specification
and implement it within our own LC computing center. The differences in security
architectures and environments between the two sites made sharing server code unfruitful,
but by standardizing on the actual API specification it made sharing of higher level client
code possible. Towards that goal, NERSC has spearheaded the W3C HPC Web working
group, aimed at defining a standard web services API for HPC
[http://www.w3.org/community/hpcweb/wiki/Main_Page].

Web Server Environment

The web server environment used by Lorenz at LLNL is a critical element to the success of
the project. The web server allows applications to operate on behalf of the user in a seamless
and efficient manner. This enables developers to create powerful applications that can
provide process improvements and simplify workflow for our users.

The web server is integrated into the security infrastructure of the computing center.
Authenticating as an LC user to the web server creates security credentials which are used
when that user invokes web services. The Apache suexec module causes the CGI processes
to run as the authenticated user, and local enhancements guarantee those processes have
access to credentials required for the user to connect to clusters or use other services such as
LDAP (Lightweight Directory Access Protocol.) Take for example when submitting a job
through the Lorenz job management system – the REST endpoint for job submission will
execute a command on a remote cluster via an SSH execute line launched on the web server.
This is executed as the user and with his or her credentials and access permissions.

API Overview

Lorenz has numerous APIs and libraries focused on different use cases, as shown in Table 2.

API Language Used By Purpose

LORA Any Application
Developers

The actual RESTful API, LORA, can be
invoked directly from any language that
supports web interactions. Users locally
have developed Windows and Python
applications that invoke LORA directly.

Lorenz::Host
Lorenz::User
Lorenz::Group
Lorenz::*

Perl Lorenz
Developer

Individual Perl modules for accessing
specific Lorenz functionality. These
modules return Perl native data structures
rather than the JSON envelope returned by
the REST equivalents. Developers
implementing Lorenz internals should use
this.

Lorenz::REST::* Perl Lorenz
Developer

The specific Perl modules invoked by the
REST handler, these primarily interact with
the lower level Lorenz::Host|User|...
modules, but provide additional structure
such as a return envelope showing output,
error, and status. Data returned is in JSON
format.

Lorenz::Simple Perl
Tool
Developers
(cluster tools)

Aggregated Perl module for tool developers
that makes it simple to access a variety of
Lorenz functionality with minimal effort.
This should be the default API to use for
tools that will run on the clusters.

Lorenz::API Perl
Tool
Developers
(remote tools)

An LWP-based Perl module that provides a
high level API to the LORA web services.
This is for developers creating applications
to be run on remote hosts, although it can
be used on clusters. Requires authentication
since the library acts as a browser
equivalent.

Lorenz.js JavaScript

Web App
Developers
(LC-hosted
apps)

A high-level library that provides access to
the LORA REST services to web
applications. The calling sequence and
function names match the Lorenz::API Perl
module.

Lorenz-
JSONP.js JavaScript

Web App
Developers
(remote-
hosted apps)

A high-level library that provides access to
the LORA REST services to web
applications. The calling sequence and
function names match the Lorenz::API Perl
module. This version uses JSONP to deal
with cross-site scripting issues. (In
progress.)

Table 2: The Lorenz APIs
	

APIs in other languages are not difficult to implement. More detail on these APIs are
available in the technical report, “Lorenz APIs and REST Services.”

Data Generation and Retrieval

Livermore Computing puts particular emphasis on retrieving data for the Lorenz REST
endpoints in a timely and minimally intrusive manner. LC has several thousand users, and if
several hundred are using the MyLC dashboard at any given time the load on services from
concurrent requests could impact performance. For example, directly querying active jobs
across all clusters might take 10-60 seconds of real time, and having dozens of users making
these requests simultaneously would cause our resource management database server to
severely bog down. Add to that our goal to have the entire dashboard load within two-three
seconds, and it becomes clear we need to pre-fetch and cache as much data as possible.

Of the approximately 30 sources of information used to populate the MyLC dashboard,
two-thirds of them come from data that are aggregated and prepared by Lorenz cron jobs
running on the compute clusters and stored either in a Redis key-value store or in a globally-
mounted file system in flat files. This information retrieval is nearly instantaneous, and
allows the dashboard to load extremely quickly.

The downside of this approach is that some data may be slightly out of date. Critical data are
collected in a central place every 30-60 seconds, which we found to be a good compromise
between timeliness and efficiency. Infrequently modified data are collected hourly or daily,
depending on the source. For applications that require up-to-date information, critical
LORA endpoints support parameters that will cause live data to be retrieved.

Client Strategies

Web Browser versus Heavyweight Application

A key design goal from the outset was to require nothing more from our users’ desktop
environments than a modern web browser. Users of Livermore Computing resources
employ a diverse range of desktop environments, ranging from all flavors of Linux to
Windows and OS X. Deploying a thick client across all major OSes and versions has the
primary drawback of difficulty in doing coordinated and timely updates. It was an obvious
choice to focus on web-based technologies for the Lorenz client. In addition to rapid and
easy deployment of new versions, we’ve found web development to be easier and faster than
comparable thick Java applications.

Web Languages and Strategies

The Lorenz client is written mainly with HTML, CSS, JavaScript (JS), and jQuery. For UI
components and widgets we use the jQuery UI library. Additionally, we make heavy use of
the jQuery UI widget factory design pattern.

The client takes advantage of a wide array of different optimization techniques such as:
image sprites, JS/CSS compression, JS bootstrapping, dependency injection, lazy loading,
contextual jQuery, XHR caching, browser caching, and server side rendering. Extensive

benchmarking and instrumentation led to these optimizations as well as server-side
optimizations, ultimately improving page-load performance by 2-4X.

The implementation of the dashboard portlets use a prototypal inheritance model that is
facilitated by the jQuery UI widget factory. It is through this inheritance model that we are
able to allow developers to easily develop new portlets by simply inheriting from our portlet
base class. This follows the key Lorenz principle of using object-oriented design and
development whenever possible.

To provide flexibility and convenience when creating dynamic pages, client side templating is
used throughout on the majority of our applications. We use jQuery templates as our
templating language. jQuery templates provide ways of creating chunks of HTML and
applying an object of attributes to them via the jQuery DOM manipulation methods.

SIML – Simulation Markup Language

The Lorenz simulation portal makes use of forms written in the Simulation Input Markup
Language (SIML). These forms are interpreted into HTML format and presented in the
user’s web browser (see Figure 5). After completing and submitting the form, simulation
input files are created on an LC resource, and a batch job is submitted. The user is directed
to the Lorenz job management element to monitor progress, as well as to examine the
results of the completed simulation.

SIML extends standard HTML with custom widgets and error checking suitable for building
simulation input files. This approach takes advantage of the powerful existing mark-up
capabilities of HTML, and extends it with a variety of form inputs and validations necessary
to create a proper simulation input file.

Figure 5: The Simulation Portal workflow

Lorenz Development and Usage

In January of 2011 Lorenz was deployed in beta mode on LC computers. After several
months of user and staff feedback, version 1.0 was released on May 17, 2011. User reaction
to Lorenz has been very positive. Usage has steadily grown with each release.

The convenient and customizable access to information and services through the MyLC
Dashboard has appealed to users and computing center staff alike. This rich and polished
user experience helped draw in users, and encouraged them to try other elements of the
Lorenz suite of HPC tools.

An important part of the user adoption of any tool is the interface. A combination of
development and design skills are necessary for creating a successful web application. An
attractive and intuitive interface provides the initial draw, but relevant and powerful
capabilities are what retain users for the long term.

Future Work

Users and staff members have provided a long list of additional capabilities and types of
information they would like to see in Lorenz. Some of the proposed extensions include

• A center-wide alert system that allows users to subscribe to specific types of events
(batch job completion, host downtime, news items).

• A calendar that tracks system modifications and other significant events on all
clusters.

• Enhancements to the job management tool to enable more options during job
launch and more capabilities for interacting with running jobs.

• Additions to the application portal that help users choose the appropriate resources,
such as cluster and file system, given the requirements of a job.

Conclusions

User response to Lorenz has confirmed our belief that there is a place for web-based
applications in the HPC world. Rapid evolution of web technologies has enabled the
development of full-featured and robust applications. Because users today are immediately at
ease using a web interface, there was quick adoption of the Lorenz suite of tools.

The Lorenz tools allow HPC users to focus on their simulations and science, rather than on
the computing center and how to use it. These tools reduce the time it takes to learn how to
use resources effectively, simplify tedious and repetitive tasks, and make sure that users have
access to critical information when they need it.

